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Abstract. The effects of a periodic hexagonal lattice of columnar defects on the curves of
magnetic inductiorB(H ), vortex-lattice meltindl;,, (H) and critical current density,. (H) versus
external fieldH are investigated, including the effects of vortex interaction, thermal and quantum
fluctuations, an applied current drive and columnar pin disorder. It is found theoretically that the
smallest slope oB(H) occurs when the magnetic inductidhmatches the regular pinning field
npinto Over a finite range off. This commensuration leads to an inhibition of the vortex-lattice
melting and a large enhancement of the critical current density, i.e., the curjp&idj andJ. (H)

each have a series of broad plateaus. The applied currentdrive, electric field-like in form, shifts this
melting curve downwardsl,(T) is the power-32 temperature decay at intermediate temperatures
and decays exponentially to zero at high temperatures. The pin disorder and ion straggling reduce
these favourable effects and wash out the plateaus when they become equal to certain critical values.

1. Introduction

Columnar pinning sites produced by heavy-ion bombardment are known to pin vortex lines in
a vortex liquid in high-temperature superconductors [1,2]. The ions produce quasi-cylindrical
voids and other defects7 nm in diameter; vortices of core size~ 1 nm can be bound

to these columnar holes. The properties of random columnar pins and single-vortex lines
forming a Bose glass have been studied theoretically [3]. For fields suciBthat: ,;,¢o
wheren ,;, is the pin density angyo the flux quantum, a maximum vortex-line pinning and a
superconducting phase are postulated [3] (a Mott-insulating phase in terms of the vortex lines).
On the other hand, below a vortex-lattice freezing—melting line [4—6], the liquid of vortices
forms a lattice with compressional, tilt and shear elastic moduli [7] that play an important role
in determining the melting lin&;,, (H) estimated according to the Lindemann criterion. Of
course, quantum fluctuations turn out to be quantitatively important except in the immediate
vicinity of 7. [8]. In general the weak point pinning is regarded as unimportant qualitatively,
merely shifting the melting line downwards [9]. However, extended defects, such as twin
boundaries of separation140 um, can produce large peaks &f just belowT7,,(H) [10].

An excellent review and rich supply of references including all of these features are given
by Blatteret al [11]. Recently, some progress in vortex physics has been achieved [12].
The dynamics and pinning of the vortex lattice in a periodic potential have also attracted
much attention [11,13-15]. For example(H) peaks at matching magnetic fields have been
observed for lowF, materials [16-18].
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In this paper, | focus on the commensurability of vortex lattices with a regular lattice of
columnar defects and investigate the effects of the columnar pins on the curves of magnetic
induction B(H), vortex-lattice meltingr,,(H) and critical current density.(H), including
the effects of vortex interaction, thermal and quantum fluctuations, columnar disorder and an
applied current drive. The pins are modelled [13] by a periodic hexagonal lattice of harmonic
well depths, and | am interested in the commensurate case of vortex lattices in registry with
the periodic pinning potential. This corresponds to a Mott-insulator-like regime [3], but now
in a vortex-lattice part of the phase diagram.

The model of periodic columnar pins is theoretically interesting in itself; a possible
experimental method of producing such well-defined pinning arrays is also crucial. The
question in experiments is that of how to choose the pinning parameter values of the periodicity
a, (hole separation) and sizg (hole radius). The small values of the coherence length
(¢ ~ 1 nm) and the large values of the Ginzburg—Landau parameterX/& ~ 10?) for high-

T, superconductors are essentially different from the corresponding values for conventional
superconductors. Higl; superconductors are extreme type-ll superconductors; the areal
vortex density changes over many orders of magnitude on changing the magnetic field from one
that is weaker than a lower critical fiel.; < 10~2 T up to the upper critical fieldl., ~ 10? T.

What is the best working value &? FromB ~ H, the values of 10'~10" in T for high-T.
superconductors and 010" in G for conventional superconductors, the commensurability

of vortex lattices with a periodic columnar pin lattice is of major importance. To ensure that
B ~ By (52(]50/\/1_3@12,), we requirez, on the nanometre scale for high-superconductors and

on the submicron scale for conventional superconductors. Experimentally, the regular lattices
of holes in the conventional superconductors were prepared using lithographic techniques
[19]. A regular nanometre-scale pin lattice has been made in an ‘island’ type of artificial-
pinning-centre superconducting composite wire [20] and such lattices have unusually good
superconducting properties. For example, the pins are extremely regular in positioning and
shape for, = 46 nm and the critical size for the regular pingjs>~ 15 nm. Furthermore,
whenr, went from a large size down to 7.5 nm, the matching figjd~ 0.3 T (corresponding

toa, ~ 81.6 nm) was obtained. It is possible that a highly uniform, periodic lattice of vortex-
pinning holes can be achieved near to the optimum vortex-pinning size for useful high-field
superconductors. This periodic lattice of columnar pins in Higtsuperconductors could

be produced by ion beam irradiation through a mask that is drilled by a computer-controlled
laser beam. Recently, introducing ordered arrays of columnar defects by means of electron
irradiation [21], the enhancement éf and matching effects in the pinning force density have
been observed. Of course, the model presented in this paper is suitable for any values of
microscopic pinning parameters, such as sjzeeriodicitya, and depthV,, as long as they

can be carefully controlled experimentally. Typical values gfa, andV, are chosen for
illustrating interesting issues.

The behaviour of the vortices is determined by the competition of the vortex interaction
energy, pinning energy and thermal energy. Remarkably, the vortex interaction energy and
pinning energy have the same order of magnitude below intermediate val@earaf have
1-T/T.and(1— T/T,)? dependencies at high, respectively, as well as both vanishing at
T.. Thus in the physical picture this problem is described by two characteristic temperatures:
the thermal excitation temperatufg required to eject the vortices out of the traps which,
as a function ofl and H, is determined by the strength of the pinning energy and vortex
interaction; and the melting temperatig, in the absence of the pins which, as a function of
H, is determined by the vortex interaction strength. For the strong-couplinggaser,,o, at
low temperatured « T,,0 or low field H ~ H.1, the vortices first form a commensurate state
with all vortices trapped to look like a solid if the number of pins is larger than the number of
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vortices. Otherwise, if the number of pins is less than the number of vortices, then a subset
of the vortices are pinned and other vortices get out of the traps and still form a sublattice.
For the intermediate-coupling ca%g ~ T,,, atT ~ T,0 0r H1 <« H <« H,,, the vortices
first form two subsets of the possible lattice and then melt the sublattice out of the traps at
T = T,,. For the weak-coupling cadg « T,,, atT ~ T,, or H > H,1, the vortices first get
out of the traps and still form a lattice and then melT'at 7,,. Therefore theB(H) curve,
starting from the minimum of the Gibbs free-energy densityith respect toB, shows a
series of small-slope segments. Thg H) andJ.(H) curves, used for obtaining an extended
Lindemann criterion and determined by the balance between the pinning force tending to keep
the pinned vortex in the hole and the Lorentz force tending to detach every vortex from the
ideal position, respectively, each show a series of plateaus over a broad rdtige of

The main results are that:

(i) there are a series of small-slope (the slope even vanisBél)) curves within the
commensurate regions;

(i) commensurate pinning inhibits vortex-lattice melting; thg(H) line has a series of
plateaus over a finite range of external fiéld

(i) an applied current encourages vortex-lattice meltihgH, J) < T,,(H, 0) (=T,,(H));

(iv) J.(H) also has strongly enhanced plateaus due to the matching effes;shows the
usual power-32 decay at intermediate temperatures and exponential vanishing at high
temperatures;

(v) positional disordes, in the periodic pinning less than a critical disordep, < &,
reduces these favourable effects and washes out the plateaus yaed,..

This paper is organized as follows. Section 2 first describes the constiBsiZerelation
as the competition of hexagonal lattices between a vortex lattice and columnar pins. Sec-
tion 3 develops the model as an elastic energy functional including the thermal and quantum
fluctuations and periodic columnar pins with disorder. Section 4 evaluates the vortex-lattice
melting curveT,,, (H), and presents the effects of a current drive on the melting @yvd, J)
with and without pinning. Section 5 gives limiting estimates of the critical current density
J.(H, T) with and without disorder. Section 6 gives a summary and conclusions.

2. The small-slope transition of vortex lattices

We shall assume that a regular lattice of vortex lines represents the most favourable
configuration of type-Il superconductors in the equilibrium state even though pin sites enable
us to adjust the vortex lattice and induce multiple-flux quanta [22]. If one considers just the
interactions between vortices, then a lattice of vortices parallel to-thés at the point$R; }

gives a two-dimensional magnetic field distribution which is proportion&IgaR; /1), a zero-

order Hankel function of imaginary argument. The Gibbs free energy per unit volume without
pinning takes the form [23]

Hq,—H ¢$oB ! R;
G, = B+ Kol — 1
A 87 32122 & °< Y ) @

where the sum is over all vortices, excluding the one at the origin. The equilibrium vaRie of
is found by settingG , /9 B = 0. An implicit equation for the constitutive relatidgh= B(H)
was obtained in inverse form [24]:

1
H=H,+ % [220(,0) + épzzlm] (2)
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where
I !
Zo(p) =) Kolpmm) — T1(p) = 40°(0/90%)?Zo(p) = Y 15, Ko(ostim)
Im Im
p = ao/X Pim = V12 +1m +m?

with  andm integers for the periodic hexagonal vortex lattice. The distancketween
adjacent vortex lines is set by the average magnetic indugtidn practice, only square and
hexagonal lattices have been considered, in wiick ¢o/a3 (square) and3 = 2¢0/J§a§
(hexagonal). Substituting equation (2) into equation (1), one has

B 2
—%Mp). (3)
Like the results [24] for the square lattice, the above sums for the hexagonal lattice for the
rangeH.; < H < H,; may be easily obtained analytically. The results are

Ar 1. [(/3p? 3V3 p?
+5In —A- 3 2 (.2 2 2
\/§p2 2 87 64z Im Mim (Mlm + 3/0 /16” )

Ga[B(H)] =

Yo(p) =

with A ~ 0.17155 and

16 2 33y 1

V3pt p? 16m3 4 (ul, +3p?/16m2)2

The analytical expressions for equations (2) and (3), defingd,asnd G 4 for convenience,
are given by

Hy=H.,+B+ %o [In<4¢0 )—2A—1:|

Z1(p) =

8r A2 7A?B
12V343 <~ L @
(47-[)\')632 I,m ,blem (I’lem + \/§¢0/87T2)\'23)2
B ( ¢o 3¢5 ' 1
B(H)] = —(-— — B — : S
GalB(HA)l 1672 (4A2 > 10247°3% < (12 +/3¢0/872A2B)?2 ©

Equation (4) is just the Abrikosov curve in its inverse foB¢H ) for all values of the external

field such thatd.;, < H < H., in mean-field theory. The series in equation (4) converges
rapidly, so five nearest neighbours are sufficient for obtaining an accuracy of five significant
figures. This Abrikosov vortex lattice exists below the line of melting transitipng). In

this regime, thermal wandering of vortices can be neglected, and the vortices will be essentially
straight, which allows us to ignore the elastic energy, especially in the pinning regions when
the number of vortices is less than the number of pins.

Onintroducing a hexagonal lattice of columnar pins, one needs to consider the competition
between this lattice and the hexagonal lattice of vortex lines. A-RE Abrikosov curve is
modified by the pinning energy term that lowers the energy close to commensurabilities. Using
therigid-rod approximation to focus on the main small-slope effects [13,25], the pinning energy
is expressed in terms of a parabolic well of radipsgind depth—%v,,:

1 18,12
E -V "1 for |46,;
Ep = 2p|: r,z, :| 10pil <75 (6)

occupied pins
0 for |6, > 7p

where the pinning strength is determined by the solution of the Ginzburg—Landau equation for
the vortex line [4] and has an interpolation formig = goIn(1 + r[2,/2§2) with the elastic
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energy per unit length [11y = (¢o/471)2. The vortex line with equilibrium positiol; is
trapped by a single columnar pin centred®; andd,; = R; — R),;.

The hexagonal vortex-lattice vectofR;} are of minimum scaleg and the competing
hexagonal pinning-lattice vectofR ; } are of minimum scale, with a ‘matching field'Bs, for
this columnar pin lattice. The measure of columnar density commonly uB@d:ide;o/\/:_%aﬁ
with area densityz,;, ~ a;z. In exact commensurate cas¢®,;} is a subset ofR;} if
ap = a, /i intheB > Bgregime, andR; }isasubsetofR;} if a, = ao/wim intheB < By
regime. We may take the equilibrium displacemetss a, — aopim (8, = a, — ao/im) t0
represent the average valueg&f| in the B > By (B < Bg) regime. The pinning potential
is effective only for a finite range of fields B, = B\’ — B\’ around the commensurate

valuesBy,, = Boui2, i.e.,la, — aouist| < r,, the vortex line inside a columnar hole, where

the boundary values fa are B, = B;,,(1 ¥ r,/a,) 2. The relative width around,, is

-2
AB,, 4 2
m _ ZTp 1—(r—"> <1 @)
Blm ap ap

The width increases witB,,,. Foré, beyondr,, the pinning contribution is zero, while féy,

less tharr,,, Ep is quadratic ins,. We introduce a factor which is defined as a ratio of the
sum over occupied pins to the sum over all vortex-lattice sites. ThuB ferBy (B < Bg),
every pin site is occupied (every vortex is pinned) and the factop = ag/ag (v =121). Only

the occupied pin holes contribute &y, so the sum is over the pinned vortex sites. This leads

to
S =

occupied pins

i

where the sum for = (I, m) is over all vortex lines in the y-plane.
The total Gibbs free energy per unit volume becoies G 4 +G p, on adding the pinning
energy contribution

2
G Ep vaB<5

- ~ L _1)le@¢, -8

totalareas 2¢p \r2 rp =)
with ® (x) the Heaviside step function. Taking the minimunGo#ith respect taB at constant
T leads to the general relatigh = H, + Hp, with H, given by equation (4) and

2
Bo | B By,
(a_l’> Do /L(l_ /L) for B > Bo
4 rp B B B
Hp = —V,0(r, = 4,) 2 3
(“_p) (1_ /ﬂ>_1 for B < Bg.
rp B

$o
This modification is only for the range where vortices are at the pinning sites. From equation (8),
one obtaingip > OforB > B;,, andHp < Ofor B < By, withinthe widthsA B;,,. Therefore,
the slope ofB(H) within A B;,, becomes small. In particular, in tle>~ Bg regime,

0 forB= B¢ +0
Hp = —4—an forB= By — 0 )
®o
and the slope vanishes for an exact commensurate conditienBs. This just represents
‘Meissner’-like or ‘Mott-insulator’-like transitions. In the two limit cases Bf < B¢ and
B > B, We get hardly any change and get back to the Abrikd®el curve at best. Except
for the small-slope transitions, are there any fiedenstant value8 = By, on the flat parts

(8)
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of the B—H curve? An answer to this question is suggested [13] by finding the minimum in
the Gibbs free-energy branches. In fact, one only needs to discuss two possible competing
branches of the generél and specialG,. with
1)VpBlm

2¢0
within |AB;,,|. If AG = G. — G < 0, thenB = By, lock-in occurs. To examine this,
one extends the earlaG calculation [13] to the exact-vortex-interaction case, and from
equations (4), (5) and (8), it is easy to get

2 2 9024%B
AG—B“"<B 1>+¢°B”"<1 B+|nB>+ 954, B

G = G|B=B,,,, = GA‘B:BI,,, -

~ 167 \ B, @M2\" B, B/ (41)7A8B,
’ _ 2
> Z (l Blm/B) + Vp
o [ub, +3Boa2/ (4302 Bl i, + 2v/3po/ (4n1)2B]?  V/3r2
(Bim/Bo)?[(B/Bin)Y* — (By/B)] for B > Bo
[1— (Bim/B)YA[2(Bim/B)Y? — (B,/B)*? — 1] for B < Bo.

(10)

Every term on the right-hand side of equation (10) is greater than or equal to zero, except the
second term in round brackets @), resulting inAG > 0 for all possible values aB. This
shows conclusively that a periodic hexagonal lattice of columnar pins can give rise to a series
of small-slope segments in tiB H) curve within the matching regions, but the fixBdvalue
B = By, isonly atB = By over a small range off.

According to the minimum of the Gibbs free energy, the usual Abrikosov curss &%
is followed with equation (4) untiH becomes equal té&l ", when the vortex lattice enters

the pinning region. Thé(H) curve then jumps t&.’; the widthAH = H'” — H(" is
traversed by equations (4) and (8) with small slope within the widti®s, until H reaches
H'”. The B(H) curve then jumps back to the Abrikosov curve as the vortex lattice moves out
of the pinning region. At low temperatures and high magnetic fields, the dependencesbf
£ on the temperature and field become [11,28}) = ¢%(0)/(1 —t — b) with ¢ = (&, &),
the reduced temperature= 7/ T,, the reduced magnetic inductien= B/H_.(0) and the
zero-temperature upper critical field.o(0). For the choice of parametek$0) = 100 nm,
£0) = 1.4 nm,H.(0) = 170 T andZ, = 92 K for YBaCuO high?, superconductors and
taking the pin values, = 7.5 nm anda, = 50 nm (corresponding t®, = 8.28 kG),
figure 1 shows theB—H curve atT = 77 K with three small-slope segments By, =
(1/3, 1, 3) By, regions. These regions are those of the sublattices of hexagonal structures with
commensurations; = 3By (I = 0,41, £2,...). For convenience, we use tHigrom B,
rather thar(/, m) from By, to label the commensurate regions in figure 1. The ‘Meissner’-like
effect for B = B¢ is very weak sincéd « H,, for high-T, superconductors. Although this
effect is too small to observe, the matching effectdpnH) andJ.(H) are pronounced (see
figures 2 and 3 below with the same labgel

Incidentally, this problem has much in common with the Frenkel-Kontorova and FVdM
models [27], where competing periodicities of an elastic system and an underlying substrate can
produce ground states of different periods. Domains can form when these uniform-ground-state
mismatch energies between system and substrate exceed domain wall costs. The possibility of
arich structure in possible ground and metastable states can result due to the transition between
commensurability and incommensurability in the vortex lattice and pin lattice, including devil's
staircase parameter dependencies and dynamic effects of vortex-lattice relaxation against a
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Figure 1. The constitutiveB—H relation is given for YBaCuO superconductors by equations (4)
and (8) at fixedl’ = 77 K, with the parameters(0) = 100 nm,£(0) = 1.4 nm, H.2(0) = 170 T,

T, =92K,r, = 7.5nm,a, = 50nm (Bo = 8.28kG). The solid lines represent the commensurate
curves, showing the small-slope and lock-in transitiong fer—1, 0, 1. The dotted line represents
the Abrikosov curve in the unpinned case (jumps are not shown).

periodic background [28]. It is much more reasonable to assume that energetically favourable
structures may have domains with hexagonal lattices inside them and domain walls between
them. Using the FVdM model [27] as a generic form to make an estimate, domains are
disfavoured if the dimensionless domain density/L = ,/V,/eo with relative domain size
L is not greater than the relative average mismatch of the two periodicity scales (of the vortex
lattice and pin lattice§,, /a,, wheres,, = a, — (p/q)ag with integerp andgq. Thus the
domain wall condition i$,, < a,./V,/e0, showing a dependence on the depth of pinning.
This simple estimate shows that domain-induced effects could occur if

1—T/T. > 2(6(0)/r,)?[exp(r]/a5) — 1].
For highZ. materials with the parameters given above, domain formation occurs over a
wide range of 1- T/T. > 1073. Theoretically, all of the peculiarities aB(H) curves
including integer matching fields;,,/By = ,ufmz and rational matching fieldB,,/Bs =
p?/q% = 9/4,25/9, 25/4 etc will arise if the potential, is strong enough. For example,
recent numerical simulations show [29] phase locking, Arnold tongues and devil’s staircases
in driven vortex lattices with periodic pinning. However, in an experiment only a few of
the commensurate phases will be observable because of the finite resolution. This work
focuses mainly on the integer matching fields and figures are produced for the matching fields
B;/Bo = 1/3,1, 3.

3. The elastic energy functional and the periodic pinning potential

Vortex lines have the reputation of leading to elastic forces which are modified by occasional
spare pins [30]. On the other hand, thermal energy favours a vortex liquid of lines. Thus we
need to consider an elastic energy functional and a periodic pinning potential. Vortex lines
i, j of transverse separatien= r; — r; interact via a screened potential in three-dimensional
coordinate space given by(r) = (1/r) exp(—r/A) with the coordinate of the vortex line
segmentr; = (R; + u;(z), z) atz displaced by an amount; (z) from its perfect hexagonal
reference sit&?;. Herex is the London magnetic penetration depth intheplane. Its Fourier
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transform is given by (k) = 1/[1 + A2(K? + %k?)] with k = (K, k;) and K = (k., k).

Heree = /my/m. < 1 is the ratio of the anisotropic Ginzburg—Landau masses. The
momentum-space displacements are

up(k) = aSZde exp(—iK - R;) exp(—ik.2)u; (2)

with u = (x, y) where the integral is taken over aglfor a given vortex ling, and the sum is
over all vortex lines. The inverse transform is

W 2 2K . .
u; (z) = [ / )2 exp(iK - R;) explik z)u, (k)
where theK -integral is over the two-dimensional Brillouin zone, approximated by a circle of
radiusK ; = /4w /ag with unit-cell area(/4)a3. For the hexagonal lattice, the reference
sites areR; = (Iv/3ao/2, (2 + m)ap/2). Then an elastic energy functional can be obtained
for small displacements in momentum space in terms of strain variables [11]:

dk, b PK
EP =2 / / W [c11(R) | K - u(k) | + cool K 1 - w(k)|? + caa(k)k?u(k)|?] .

(11)

HereK, = (k,, —k,) andci1, ces andcas are the compressional, shear and tilt elastic moduli
of the vortex lattice in an isotropic medium. The simplest possible expressions for elastic
moduli are

1) ~ Caak) _ B/Am __Bdo
cu(k) = €2 T g2+ )2K2 €66 = (8m1)2

due to the softening of the vortex lattice in hi@h-superconductors. Quantum dissipation
effects are also important below the intermediBtand the elastic free energy including such
effects in (11) is modified to [11E,, = E. + E, where

el 1

EP = i dK S Ip@)e? +n@oodu®P  (12)
el — a (27_[)2 ~ pPlwy a)n nlwy)wy ]|y,

and the displacement field(z) — wu(z, ) acquires an (imaginary) time dependence with
the Matsubara frequenay, = 27wnkgT/h. Herew,—o(k) is the previousu(k) and p(w,)
is the vortex mass per volume. The viscosity coefficient(is,) = n(0)/(1 + w,t,) where
n(0) = ¢0H02/chza§ is the vortex coefficieniyy is the normal-state resistivity angddenotes
an appropriate effective quantum relaxation time.

The pinning energy is taken to be parabolic in displacement from the minimum:

. 2
Epin == VUZ/ dz |:;7 pz_Rpi(Z)-l-ui(Z)‘ —1:|
P
X @y — 18, — Ryi(2) +ui(2)]) (13)

where R,,i (z) represents the transverse misalignment of columnar pins and possible
‘straggling’ of the columns along the-axis. The elastic energy terms (11) and (12) are
diagonalized in momentum space while the pinning energy term (13) is diagonal only in
coordinate space. To carry out the functional integration in momentum space, one needs to
approximate the Heaviside step function constraint to holding in an average sense (neglecting
R2, < r2): |u; +6,:|% < r2, through the following two steps. Firstly, since the equilibrium
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variabless ,; (for u; >~ 0) and the displacement variables(z) (for any values o) are
independent each other, equation (13) can be simplified approximately to

1 52 L. 1. 2
Epin = Evv,,<1— é)@(r,, —5,) Z/O dz [% ‘Rp,»(z) - u,-(z)‘ - 1}
x O(rp, — u;(2)). (14)
Secondly, since the fluctuation has a Gaussian distribution, the probability is

1
~ exp[—§5<|u,» 2/r2 — 1)]
if the constraint is satisfied and
1
~ exp[§ﬁ<|u,- /r5 - 1)}

if it is not. So one can take the fraction with this Gaussian weight, normalized to these
alternatives:

1
1+expB((uf)/2r2 — 1)
Substitution off for ®(r, — u;(z)) is a key approximation witl$ a dimensionless constant
of order unity. f, with a Fermi-like distribution, mimics the constraint of (14) and is some
function interpolating between unity f¢r?) < 0 and zero fofu?) > 0.

We assume thaﬁp,- (z) isarandom variable{,l?j,‘i (2))4is = 0 and its correlation function
involves ani-dependent misalignment and a Gaussian distribution straggling along the
direction:

O(r, — u;i () =~ = f((u?)). (15)

(RO () RY(2))ais = 6205818, €Xpl=(z — 2)?/2L5r7]. (16)
Heres,, L, are dimensionless variables describing the disorder inxthplane and the
correlation length in the-direction, respectively. Since the elastic energy functionals (11)

and (12) are Gaussian, one takes only a disorder average,fpiby use of the correlation
function equation (16). One finally gets the total-energy functional in momentum space:

1 [ dk, (Kiz 2K «
E=E(1)+E(2)+—/ z/ T
0 el el 2 - 27_[ o |’LL( )|

(21)? a2
v, G 2
e,,zvf—é(l—%)(l——é)@(rp—ﬁp) (17)
rs Ope as
_2 kBTrp

52 = ———L __exp[k,L,r,)?%/2].
" Vydd2nL, e

Although the pinning energy contribution is like a quantum contribution, it will affect both the

thermal and quantum mean displacements. Equation (17) shows that the columnar disorder

reduces the pinning strengt, — V,(1 — 63/656), and acts like a zero pin f@r, greater

than its critical value ..

4. Inhibition of vortex-lattice melting with hexagonal columnar pins and its
encouragement with an applied current drive

The melting temperature depends dramatically both on the flexibility of the lines and the ratio
of pinning energy to elastic energy. The mean square displacement amplitude
(ui?) = Alun(k)?) = d?

n,k
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can be expressed as

d2 = (f Dlu] Z |u,,|2exp(—Eo/kBT)>/</ Dlu] eXD(—Eo/kBT))

- © dk, (X2 2K 1
- Z/wZ/o (27)2 (cu(k)K2+c44(k)k§+n(wn)|wn|+ep/a§

! ) (18)

+
CGGKZ + C44(k)k12 + 7]((1),1)|a)n| + EP/ag

from transverse and longitudinal components. Following Bl&ttat[8,11], | use the simplest
formula to deduce the mean square displacement amplitude. First, consider the thermal term
(n = 0); the resultis

d")? = (dg")prea. (19)
Here
d? = &&QZ
0 ﬂm 1 -t — b 0

is the zero-pin mean square displacement amplitude [8, 11] with the Ginzburg number

1
Gi = glks T./ee0(0)£(0)]?

and numerical factop,, >~ 5.6. Where | have simplified the integral formula, the detailed
calculations merely change the valuegpf[6, 8]. Withk, = /L ,r,, the reduction factor is

Prea =/ 1+p—pIn[(L+/1+p)//p] (20)
where
& _ Vwfag( & 5 r
= = - L)(1-2 —5,)In(1+
p 477:6.66 27[7[2, 6_3C 0127 @(Vp Sp) n ZEZ(I)

represents the ratio of pinning energy to elastic energy. This is a key parameter and varies
from zero (zero pins) to>1 (strong pins). For commensurate regimes, the thermal fluctuation
magnitudes are reduced by the fagtay,;, andp,.; ~ 1—pIn2forp « landp,.; ~ 2/3,/p
for p > 1.

The quantum contributiom(£ 0) is dominated by single-vortex fluctuationgkat- Kgz;
the result is

(d(()Q))Z
1+Ty/T"
Here(d{®")? ~ 4vot /m2K - is the zero-pin mean square displacement amplitude [8, 11] with

the Fermi wave vectok » ~ 1.5-2.0 nnt* and numerical factory ~ 4 [8]. The quantum
characteristic temperatui® is

Bonvf (1 FEN(,_ % 2
To=———1-=)(1-=)O@F,—-6,)In[1+==
¢~ TentrZhkpc? " &2, a2 rp =) 262

below which quantum tunnelling is suppressed by the hexagonal lattice of columnar pins.

SinceTy « T, [13], we can ignore this effect.
Combining thermal and quantum contributions, | obtain

Gi Vbt o 4O
Bul—t—b 00" g T—1—b

@) = (21)

di = (dlg”)Z + (d;Q>)2 = (22)
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Extending the Lindemann melting criterion, the vortex lattice becomes unstable and melts
whend, reaches an appreciable fraction~ 0.1-0.3 of the scale lattice constaut(a,) for
B > By (B < Bg):
dﬁ = vcialz,. (23)
It is actually more convenient to determine the melting linga¢7") by solving the equation

£%(0) G; 4vg
t=1-b, vc%a% |:27'[tpred Bobn + 7125(0)KF‘/1 t bm] (24)
In general, f depends orai,f and is thus evaluated self-consistently. For the vortex-lattice
melting, however, one can uge= f(vcZa3) in this case. Alternately, from equation (24)
one can get its inverse forf, (B) and further obtain the melting ling, [ B(H)] by use of
equations (4) and (8). Clearly, sinpg.; < 1 for commensurate regimes, the melting line is
pushed to higher temperatures.

With the following choice of parameters for the YBaCuO systeni0) = 100 nm,
£Q0)=14nme =1 T, =92K, H(0) =170 T (s0G; = 4 x 107%), Ky ~ 1.7 nnT 1 [8],
Bn =56,v0=4,8=1r, =75nmanda, = 50 nm B = 8.28 kG), and the fitting
parameter; = 0.2 for the zero-pin case [8, 31] arig, = 0 (without disorder), figure 2
shows the melting ling;,,(H) (solid line). This line rises sharply on going froBoutside
the commensurate region #® inside the small-slope region fér= —1,0,1. Roughly,
T, ~ T./(1 + 0.05p,.q) at B = By, well below 7.. The increase of 10% iff,, agrees
with the observation [19] excellently, in which,, (T") shows a series of cusps Wiﬁfo =1
(1=123,..).

92
9 [\
88l
86

Tm(K)

84
82

80 ' ‘ ' '
0 10 20 30 40
H (kOe)

Figure 2. The curve of the melting temperatuifg, versus the external field is given by
equations (24), (4) and (10), with the parameters % Bn = 56,v90 = 4 Kr = 1.7 nnT1,

cy = 020, = 1ands, = 0. The solid line represents the curve in the absence of a current
drive (/ = 0). The dotted line represents the equation (24) curve modified by equation (28) for

J =1x10° Acm~2. Inthe pinned case, there are three plateausfer —1, 0, 1 (the curve with
disorder is not shown). In the unpinned case, as a special example, the shape of the melting line is
well described by the single remaining parameter= 0.20.

Now considerc-directional currentf drive effects.J is like a topological ‘electric field’
with a linear potential energy additional to equation (17):

L
E=k- Y [P e (25)
i 0
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SinceE[u] is Gaussian, one can easy obtain the statistical partition function:

2
2= [ Pl exp-E/ka) = 20 exp[<u§>03(¢01 LZ) } (26)

2 CkBT

with subscript zero denoting the absencé oFrom(u,) o« 0Z/Z 3J and(u?) o< 92Z/Z 3J?,
| get '

$oJ L, $oJ L, \?
(uy) = ;;(7@5)0 (u?) = (M§)0+2<M§>g(cc;€?> :
Since(u?)o = (u?)o = 3(u?)o = 3d2, | have
¢oJ L.\
(W?) = 2o+ ((uy — (u,)?) = d? [l +d§(2§kBT> ] : (27)

Using the criterion of melting withy = 0, equation (24) is modified to

£2(0) $oJ L. \? Gi 4y
t=1-b,—— [1+d12,< ) 27t Preq ,mem+ Vi—t—b,|.

vegaz 2ckgT 728 (0)K ¢

(28)

Figure 2 also shows the melting lifg, (H, J) (dotted line), from equation (28), faf =

1 x 10° A cm=2 with L, = 2a, = 100 nm. This line shifts downwards and the shifting is
smaller within the pinned region than outside the pinned region. Current encourages melting
while pinning inhibits melting. In the special case of the absence of columnar pins, on setting
p = 0,v = By/B andH = H,(B) in the above formulae, the plateaus disappear in the
curves ofT,,,o(H, J), like in the early works [8, 31].

5. Enhancement of critical current density with hexagonal columnar pins and its
destruction with columnar pin disorder

This section will address a possible mechanism for the commensurate enhancement of the
critical current density/. due to the periodic columnar defects. The matching effect is easily
observed by examining the experimenfa(H) curve. The mean columnar pin force, up

to numerical constants, is given B%r,/2L.d, acting on trapped vortices, with, /d, the
fluctuation effect [11].J. is simply determined by equating the pinning forces with the Lorentz
forcesJC¢oai/ca§ acting on all vortices in the arez:

Jo ~ cVprpab/2¢oL a’d,. (29)
Substitutingd,, of equation (22) into equation (29), the explicit formula fris
mceo(0)E(0)rp 2 me2
J(T,B) = —————=1In[1+r%/2
(T. B) 2007 n[1+r2/262(1)]
b 4vb? Ve
G, Vo
1—t—b)¥2 )| 2nbtpreq | —— + ———1—1—b 30
e )/[ Ve " w0k Y } (%0

which is still self-consistent witly. However, sincef ~ 1, this calculation is easy to do
numerically.

Combining equation (30) with equations (4) and (8) and using the same parameters as
above, in figue 3 | showJ, versusH at fixedT = 77 K without disorder (solid line) and
with disorders, = 0.16 (dotted line) forL, = 1. Itis reasonable to expect the difference in
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Figure 3. The curve of the critical current density. versus the external field is given for
YBaCuO superconductors by equations (30), (4) and (8) at fixe¢ 77 K. The parameters
chosen are.(0) = 100 nm,£(0) = 1.4 nm,H2(0) = 170 T,T, = 92K, ¢ = % Bm =5.6,1v9 =

4, Krp = 1.7 nm1, rp = 7.5 nm,a, = 50 nm By = 8.28 kG) andg = 1. The solid line
represents the curve in the absence of disaf@ge= 0). The dotted line represents the curve with
non-zero disordef, = 0.16. For commensurate regimes, there are three platealus-ferl, 0, 1.
For incommensurate regimés = 0), this smallJ. corresponds to weak pins.

J. between the cases with and without columnar defects due to columnar pinning. Note
that J.(H) shows a series of plateaus when the magnetic flux lattice is commensurable
with the columnar pin lattice and figure 3 only shows thoselfee —1,0,1. Roughly,
J(p # 0)/J.(p = 0) =~ 1/,/pr.a and this ratio is about 2.0 &# = By. Compared to
random pinning [1, 11], regular pinning leads to a marked enhancemdnt ohis is similar
to the finding from the calculation of the magnetization [32]. The dotted line shows that the
introduction of disorder shiftd, towards lower values and washes out the plateau when the
disorder reaches a characteristic value. The relative suppression of the plateaus is stronger for
[ = 1thanforl = 0 and—1. This is because the plateau fot 1 nearB = 3By is caused by
more weakly pinned interstitial vortices, which are more susceptible to disorderJ X3
curve is one of my key results.

It is interesting to calculatd,.(T) at B = By, the balance between regular pinning
and thermal fluctuation. The solid line in figure 4 shows this behaviour, displaking
(1 - T/T.)%? at intermediate temperatures as expressed explicitly in equation (3Q).and
exponentially vanishing at high temperatures with increasing temperature. This behaviour
agrees well with analysis [11] and observation [19]. The T/ T.)¥? dependence of, is also
the signature of columnar defect pinning [21]. Thermal fluctuations have smoothed the weak
pinning potential at high temperatures, fodecreases rapidly with increasing temperature,
while the regular pinning retains more efficiency with thermal fluctuations at intermediate
temperatures, resulting in a powef23decay ofJ, with increasing temperature. The dotted
line in figure 4 shows thé.(T') curve with disorde&, = 0.16 atB = Bg, indicating a marked
decrease 7. below intermediate temperatures due to disorder effects.

6. Summary

The presence of a regular lattice of columnar defects is not only technologically relevant but
also provides the framework for the physical realization of novel thermodynamical phases
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Figure 4. The J.-T curve atB = By (the other
TK) parameters are the same as in figure 3).

such as commensurability and multiple Bose glasses. The strong periodic pinning introduces
additional new features into the thermodynamic phase diagram—such as the creation of new
small-slope transitions, the inhibition of vortex-lattice melting and the enhancement of critical
current density, as well as the appearance of their plateaus. In this work, | have investigated the
effects of a hexagonal lattice of columnar defects on the curves of the magnetic indRi@ion
vortex-lattice meltind’;,, (H) and critical currentdensity.(H). The vortex—vortex interaction,
thermal and quantum fluctuations, an applied current drive and columnar pin disorder have
been taken into account. By use of the Gibbs free-energy minimum, through the exact analysis
of the vortex interaction, thB(H ) curve has been calculated. Under the elastic approximation,
the T,,(H) curve has been estimated using the extended Lindemann criterion. By means of
a dimensional estimation, the(H, T) curves have been plotted. The results clearly show
that the balance between the vortex-pin commensurability and thermal/quantum fluctuations
produces i/, a marked increase, shifts the experimentally obsefyadwards higher values

and also leads to a series of plateaud ifH) and7,,(H) curves. The applied current drive
encourages vortex-lattice melting. This occurs mainly in the regions of incommensurate field
and it is hard to destroy the plateaus within the commensurate regions. The balance between
the best matching & = B¢ and thermal fluctuations producesina power-32 decay with
temperature at intermediate temperatures and an exponential vanishing dias€he delta-
correlated columnar pin disorder with a Gaussian distribution destroys all of these favourable
effects and washes out all plateaus when it is greater than its critical value. It needs pointing
out, finally, that this approach is not only suitable for hifihsuperconductors but also works
especially well for conventional superconductors at the spatial scale accessible to experimental
investigations.
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