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Abstract. The effects of a periodic hexagonal lattice of columnar defects on the curves of
magnetic inductionB(H), vortex-lattice meltingTm(H) and critical current densityJc(H) versus
external fieldH are investigated, including the effects of vortex interaction, thermal and quantum
fluctuations, an applied current drive and columnar pin disorder. It is found theoretically that the
smallest slope ofB(H) occurs when the magnetic inductionB matches the regular pinning field
npinφ0 over a finite range ofH . This commensuration leads to an inhibition of the vortex-lattice
melting and a large enhancement of the critical current density, i.e., the curves ofTm(H) andJc(H)
each have a series of broad plateaus. The applied current drive, electric field-like in form, shifts this
melting curve downwards.Jc(T ) is the power-3/2 temperature decay at intermediate temperatures
and decays exponentially to zero at high temperatures. The pin disorder and ion straggling reduce
these favourable effects and wash out the plateaus when they become equal to certain critical values.

1. Introduction

Columnar pinning sites produced by heavy-ion bombardment are known to pin vortex lines in
a vortex liquid in high-temperature superconductors [1,2]. The ions produce quasi-cylindrical
voids and other defects∼7 nm in diameter; vortices of core sizeξ ∼ 1 nm can be bound
to these columnar holes. The properties of random columnar pins and single-vortex lines
forming a Bose glass have been studied theoretically [3]. For fields such thatB ' npinφ0

wherenpin is the pin density andφ0 the flux quantum, a maximum vortex-line pinning and a
superconducting phase are postulated [3] (a Mott-insulating phase in terms of the vortex lines).
On the other hand, below a vortex-lattice freezing–melting line [4–6], the liquid of vortices
forms a lattice with compressional, tilt and shear elastic moduli [7] that play an important role
in determining the melting lineTm(H) estimated according to the Lindemann criterion. Of
course, quantum fluctuations turn out to be quantitatively important except in the immediate
vicinity of Tc [8]. In general the weak point pinning is regarded as unimportant qualitatively,
merely shifting the melting line downwards [9]. However, extended defects, such as twin
boundaries of separation∼140µm, can produce large peaks ofJc just belowTm(H) [10].
An excellent review and rich supply of references including all of these features are given
by Blatter et al [11]. Recently, some progress in vortex physics has been achieved [12].
The dynamics and pinning of the vortex lattice in a periodic potential have also attracted
much attention [11,13–15]. For example,Jc(H) peaks at matching magnetic fields have been
observed for low-Tc materials [16–18].
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In this paper, I focus on the commensurability of vortex lattices with a regular lattice of
columnar defects and investigate the effects of the columnar pins on the curves of magnetic
inductionB(H), vortex-lattice meltingTm(H) and critical current densityJc(H), including
the effects of vortex interaction, thermal and quantum fluctuations, columnar disorder and an
applied current drive. The pins are modelled [13] by a periodic hexagonal lattice of harmonic
well depths, and I am interested in the commensurate case of vortex lattices in registry with
the periodic pinning potential. This corresponds to a Mott-insulator-like regime [3], but now
in a vortex-lattice part of the phase diagram.

The model of periodic columnar pins is theoretically interesting in itself; a possible
experimental method of producing such well-defined pinning arrays is also crucial. The
question in experiments is that of how to choose the pinning parameter values of the periodicity
ap (hole separation) and sizerp (hole radius). The small values of the coherence length
(ξ ∼ 1 nm) and the large values of the Ginzburg–Landau parameter (κ ≡ λ/ξ ∼ 102) for high-
Tc superconductors are essentially different from the corresponding values for conventional
superconductors. High-Tc superconductors are extreme type-II superconductors; the areal
vortex density changes over many orders of magnitude on changing the magnetic field from one
that is weaker than a lower critical fieldHc1 6 10−2 T up to the upper critical fieldHc2 ∼ 102 T.
What is the best working value ofB? FromB ∼ H , the values of 10−1–101 in T for high-Tc
superconductors and 100–101 in G for conventional superconductors, the commensurability
of vortex lattices with a periodic columnar pin lattice is of major importance. To ensure that
B ∼ B8 (≡2φ0/

√
3a2

p), we requireap on the nanometre scale for high-Tc superconductors and
on the submicron scale for conventional superconductors. Experimentally, the regular lattices
of holes in the conventional superconductors were prepared using lithographic techniques
[19]. A regular nanometre-scale pin lattice has been made in an ‘island’ type of artificial-
pinning-centre superconducting composite wire [20] and such lattices have unusually good
superconducting properties. For example, the pins are extremely regular in positioning and
shape forrp = 46 nm and the critical size for the regular pins isrp ' 15 nm. Furthermore,
whenrp went from a large size down to 7.5 nm, the matching fieldB8 ' 0.3 T (corresponding
to ap ' 81.6 nm) was obtained. It is possible that a highly uniform, periodic lattice of vortex-
pinning holes can be achieved near to the optimum vortex-pinning size for useful high-field
superconductors. This periodic lattice of columnar pins in high-Tc superconductors could
be produced by ion beam irradiation through a mask that is drilled by a computer-controlled
laser beam. Recently, introducing ordered arrays of columnar defects by means of electron
irradiation [21], the enhancement ofJc and matching effects in the pinning force density have
been observed. Of course, the model presented in this paper is suitable for any values of
microscopic pinning parameters, such as sizerp, periodicityap and depthVp, as long as they
can be carefully controlled experimentally. Typical values ofrp, ap andVp are chosen for
illustrating interesting issues.

The behaviour of the vortices is determined by the competition of the vortex interaction
energy, pinning energy and thermal energy. Remarkably, the vortex interaction energy and
pinning energy have the same order of magnitude below intermediate values ofT and have
1− T/Tc and(1− T/Tc)2 dependencies at highT , respectively, as well as both vanishing at
Tc. Thus in the physical picture this problem is described by two characteristic temperatures:
the thermal excitation temperatureTu required to eject the vortices out of the traps which,
as a function ofT andH , is determined by the strength of the pinning energy and vortex
interaction; and the melting temperatureTm0 in the absence of the pins which, as a function of
H , is determined by the vortex interaction strength. For the strong-coupling caseTu � Tm0, at
low temperaturesT � Tm0 or low fieldH ∼ Hc1, the vortices first form a commensurate state
with all vortices trapped to look like a solid if the number of pins is larger than the number of



Commensurate vortex lattices 469

vortices. Otherwise, if the number of pins is less than the number of vortices, then a subset
of the vortices are pinned and other vortices get out of the traps and still form a sublattice.
For the intermediate-coupling caseTu ∼ Tm, atT ' Tm0 or Hc1 � H � Hc2, the vortices
first form two subsets of the possible lattice and then melt the sublattice out of the traps at
T = Tm0. For the weak-coupling caseTu � Tm, atT ' Tm orH � Hc1, the vortices first get
out of the traps and still form a lattice and then melt atT = Tm. Therefore theB(H) curve,
starting from the minimum of the Gibbs free-energy densityG with respect toB, shows a
series of small-slope segments. TheTm(H) andJc(H) curves, used for obtaining an extended
Lindemann criterion and determined by the balance between the pinning force tending to keep
the pinned vortex in the hole and the Lorentz force tending to detach every vortex from the
ideal position, respectively, each show a series of plateaus over a broad range ofH .

The main results are that:

(i) there are a series of small-slope (the slope even vanishes)B(H) curves within the
commensurate regions;

(ii) commensurate pinning inhibits vortex-lattice melting; theTm(H) line has a series of
plateaus over a finite range of external fieldH ;

(iii) an applied current encourages vortex-lattice meltingTm(H, J ) < Tm(H, 0) (≡Tm(H));
(iv) Jc(H) also has strongly enhanced plateaus due to the matching effects;Jc(T ) shows the

usual power-3/2 decay at intermediate temperatures and exponential vanishing at high
temperatures;

(v) positional disorder̄σp in the periodic pinning less than a critical disorder,σ̄p < σ̄pc,
reduces these favourable effects and washes out the plateaus whenσ̄p = σ̄pc.
This paper is organized as follows. Section 2 first describes the constitutiveB–H relation

as the competition of hexagonal lattices between a vortex lattice and columnar pins. Sec-
tion 3 develops the model as an elastic energy functional including the thermal and quantum
fluctuations and periodic columnar pins with disorder. Section 4 evaluates the vortex-lattice
melting curveTm(H), and presents the effects of a current drive on the melting curveTm(H, J )

with and without pinning. Section 5 gives limiting estimates of the critical current density
Jc(H, T ) with and without disorder. Section 6 gives a summary and conclusions.

2. The small-slope transition of vortex lattices

We shall assume that a regular lattice of vortex lines represents the most favourable
configuration of type-II superconductors in the equilibrium state even though pin sites enable
us to adjust the vortex lattice and induce multiple-flux quanta [22]. If one considers just the
interactions between vortices, then a lattice of vortices parallel to thez-axis at the points{Ri}
gives a two-dimensional magnetic field distribution which is proportional toK0(Ri/λ), a zero-
order Hankel function of imaginary argument. The Gibbs free energy per unit volume without
pinning takes the form [23]

GA = Hc1−H
8π

B +
φ0B

32π2λ2

∑
i

′
K0

(
Ri

λ

)
(1)

where the sum is over all vortices, excluding the one at the origin. The equilibrium value ofB

is found by setting∂GA/∂B = 0. An implicit equation for the constitutive relationB = B(H)
was obtained in inverse form [24]:

H = Hc1 +
φ0

8πλ2

[
260(ρ) +

1

2
ρ261(ρ)

]
(2)
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where

60(ρ) ≡
∑
lm

′
K0(ρµlm) 61(ρ) ≡ 4ρ2(∂/∂ρ2)260(ρ)−

∑
lm

′
µ2
lmK0(ρµlm)

ρ ≡ a0/λ µlm ≡
√
l2 + lm +m2

with l andm integers for the periodic hexagonal vortex lattice. The distancea0 between
adjacent vortex lines is set by the average magnetic inductionB. In practice, only square and
hexagonal lattices have been considered, in whichB = φ0/a

2
0 (square) andB = 2φ0/

√
3a2

0
(hexagonal). Substituting equation (2) into equation (1), one has

GA[B(H)] = − φ0Bρ
2

128π2λ2
61(ρ). (3)

Like the results [24] for the square lattice, the above sums for the hexagonal lattice for the
rangeHc1 6 H 6 Hc2 may be easily obtained analytically. The results are

60(ρ) = 4π√
3ρ2

+
1

2
ln

(√
3ρ2

8π

)
− A− 3

√
3

64π3

∑
lm

′ ρ2

µ2
lm(µ

2
lm + 3ρ2/16π2)

with A ' 0.17155 and

61(ρ) = 16π√
3ρ4
− 2

ρ2
+

3
√

3

16π3

∑
lm

′ 1

(µ2
lm + 3ρ2/16π2)2

.

The analytical expressions for equations (2) and (3), defined asHA andGA for convenience,
are given by

HA = Hc1 +B +
φ0

8πλ2

[
ln

(
φ0

4πλ2B

)
− 2A− 1

]
− 12

√
3φ3

0

(4πλ)6B2

∑
l,m

′ 1

µ2
lm(µ

2
lm +
√

3φ0/8π2λ2B)2
(4)

GA[B(HA)] = B

16π2

(
φ0

4λ2
− B

)
− 3φ2

0

1024π5λ4

∑
l,m

′ 1

(µ2
lm +
√

3φ0/8π2λ2B)2
. (5)

Equation (4) is just the Abrikosov curve in its inverse formB(H) for all values of the external
field such thatHc1 < H < Hc2 in mean-field theory. The series in equation (4) converges
rapidly, so five nearest neighbours are sufficient for obtaining an accuracy of five significant
figures. This Abrikosov vortex lattice exists below the line of melting transitionsTm(H). In
this regime, thermal wandering of vortices can be neglected, and the vortices will be essentially
straight, which allows us to ignore the elastic energy, especially in the pinning regions when
the number of vortices is less than the number of pins.

On introducing a hexagonal lattice of columnar pins, one needs to consider the competition
between this lattice and the hexagonal lattice of vortex lines. TheB–H Abrikosov curve is
modified by the pinning energy term that lowers the energy close to commensurabilities. Using
the rigid-rod approximation to focus on the main small-slope effects [13,25], the pinning energy
is expressed in terms of a parabolic well of radiusrp and depth− 1

2Vp:

EP =


∑

occupied pins

1

2
Vp

[
|δpi |2
r2
p

− 1

]
for |δpi | < rp

0 for |δpi | > rp

(6)

where the pinning strength is determined by the solution of the Ginzburg–Landau equation for
the vortex line [4] and has an interpolation formulaVp = ε0 ln(1 + r2

p/2ξ
2) with the elastic
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energy per unit length [11]ε0 ≡ (φ0/4πλ)2. The vortex line with equilibrium positionRi is
trapped by a single columnar pin centred atRpi andδpi = Ri −Rpi .

The hexagonal vortex-lattice vectors{Ri} are of minimum scalea0 and the competing
hexagonal pinning-lattice vectors{Rpi}are of minimum scaleap with a ‘matching field’B8 for
this columnar pin lattice. The measure of columnar density commonly used isB8 = 2φ0/

√
3a2

p

with area densitynpin ' a−2
p . In exact commensurate cases,{Rpi} is a subset of{Ri} if

a0 = ap/µlm in theB > B8 regime, and{Ri} is a subset of{Rpi} if ap = a0/µlm in theB < B8
regime. We may take the equilibrium displacementsδp ≡ ap − a0µlm (δp ≡ ap − a0/µlm) to
represent the average values of|δpi | in theB > B8 (B < B8) regime. The pinning potential
is effective only for a finite range of fields1Blm = B

(+)
lm − B(−)lm around the commensurate

valuesBlm ≡ B8µ±2
lm , i.e., |ap − a0µ

±1
lm | < rp, the vortex line inside a columnar hole, where

the boundary values forB areB(±)lm = Blm(1∓ rp/ap)−2. The relative width aroundBlm is

1Blm

Blm
= 4rp
ap

[
1−

(
rp

ap

)2
]−2

� 1. (7)

The width increases withBlm. Forδp beyondrp, the pinning contribution is zero, while forδp
less thanrp, EP is quadratic inδp. We introduce a factorν which is defined as a ratio of the
sum over occupied pins to the sum over all vortex-lattice sites. Thus forB > B8 (B < B8),
every pin site is occupied (every vortex is pinned) and the factorν is ν = a2

0/a
2
p (ν = 1). Only

the occupied pin holes contribute toEP , so the sum is over the pinned vortex sites. This leads
to ∑

occupied pins

· · · = ν
∑
i

· · ·

where the sum fori = (l, m) is over all vortex lines in thexy-plane.
The total Gibbs free energy per unit volume becomesG = GA+GP , on adding the pinning

energy contribution

GP ≡ EP

total areas
' νVpB

2φ0

(
δ2
p

r2
p

− 1

)
2(rp − δp)

with2(x) the Heaviside step function. Taking the minimum ofGwith respect toB at constant
T leads to the general relationH = HA +HP , withHA given by equation (4) and

HP = 4π

φ0
Vp2(rp − δp)


(
ap

rp

)2
B8

B

√
Blm

B

(
1−

√
Blm

B

)
for B > B8(

ap

rp

)2(
1−

√
Blm

B

)
− 1 forB < B8.

(8)

This modification is only for the range where vortices are at the pinning sites. From equation (8),
one obtainsHP > 0 forB > Blm andHP < 0 forB < Blm within the widths1Blm. Therefore,
the slope ofB(H) within 1Blm becomes small. In particular, in theB ' B8 regime,

HP =
 0 forB = B8 + 0

−4π

φ0
Vp for B = B8 − 0

(9)

and the slope vanishes for an exact commensurate conditionB = B8. This just represents
‘Meissner’-like or ‘Mott-insulator’-like transitions. In the two limit cases ofB � B8 and
B � B8, we get hardly any change and get back to the AbrikosovB–H curve at best. Except
for the small-slope transitions, are there any fixed-B constant valuesB = Blm on the flat parts
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of theB–H curve? An answer to this question is suggested [13] by finding the minimum in
the Gibbs free-energy branches. In fact, one only needs to discuss two possible competing
branches of the generalG and specialGc with

Gc ≡ G
∣∣
B=Blm = GA

∣∣
B=Blm −

νVpBlm

2φ0

within |1Blm|. If 1G = Gc − G < 0, thenB = Blm lock-in occurs. To examine this,
one extends the early1G calculation [13] to the exact-vortex-interaction case, and from
equations (4), (5) and (8), it is easy to get

1G = B2
lm

16π

(
B

Blm
− 1

)2

+
φ0Blm

(8πλ)2

(
1− B

Blm
+ ln

B

Blm

)
+

9φ2
0a

2
pB8

(4π)7λ6Blm

×
∑
l,m

′ (1− Blm/B)2
[µ2

lm + 3B8a2
p/(4πλ)2Blm][µ2

lm + 2
√

3φ0/(4πλ)2B]2
+

Vp√
3r2
p

×
{
(Blm/B8)

2[(B/Blm)
1/4 − (Blm/B)1/4] for B > B8

[1− (Blm/B)1/2][2(Blm/B)
1/2 − (Blm/B)3/2 − 1] for B < B8.

(10)

Every term on the right-hand side of equation (10) is greater than or equal to zero, except the
second term in round brackets (60), resulting in1G > 0 for all possible values ofB. This
shows conclusively that a periodic hexagonal lattice of columnar pins can give rise to a series
of small-slope segments in theB(H) curve within the matching regions, but the fixed-B value
B = Blm is only atB = B8 over a small range ofH .

According to the minimum of the Gibbs free energy, the usual Abrikosov curve ofB(H)

is followed with equation (4) untilH becomes equal toH(−)
lm , when the vortex lattice enters

the pinning region. TheB(H) curve then jumps toB(−)lm ; the width1H = H
(+)
lm − H(−)

lm is
traversed by equations (4) and (8) with small slope within the widths1Blm until H reaches
H
(+)
lm . TheB(H) curve then jumps back to the Abrikosov curve as the vortex lattice moves out

of the pinning region. At low temperatures and high magnetic fields, the dependencies ofλ and
ξ on the temperature and field become [11, 26]ζ 2(t) = ζ 2(0)/(1− t − b) with ζ = (λ, ξ),
the reduced temperaturet = T/Tc, the reduced magnetic inductionb = B/Hc2(0) and the
zero-temperature upper critical fieldHc2(0). For the choice of parametersλ(0) = 100 nm,
ξ(0) = 1.4 nm,Hc2(0) = 170 T andTc = 92 K for YBaCuO high-Tc superconductors and
taking the pin valuesrp = 7.5 nm andap = 50 nm (corresponding toB8 = 8.28 kG),
figure 1 shows theB–H curve atT = 77 K with three small-slope segments inBlm =
(1/3, 1, 3)B8 regions. These regions are those of the sublattices of hexagonal structures with
commensurationsBl = 3lB8 (l = 0,±1,±2, . . .). For convenience, we use thisl from Bl
rather than(l, m) fromBlm to label the commensurate regions in figure 1. The ‘Meissner’-like
effect forB = B8 is very weak sinceH � Hc2 for high-Tc superconductors. Although this
effect is too small to observe, the matching effects onTm(H) andJc(H) are pronounced (see
figures 2 and 3 below with the same labell).

Incidentally, this problem has much in common with the Frenkel–Kontorova and FVdM
models [27], where competing periodicities of an elastic system and an underlying substrate can
produce ground states of different periods. Domains can form when these uniform-ground-state
mismatch energies between system and substrate exceed domain wall costs. The possibility of
a rich structure in possible ground and metastable states can result due to the transition between
commensurability and incommensurability in the vortex lattice and pin lattice, including devil’s
staircase parameter dependencies and dynamic effects of vortex-lattice relaxation against a
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Figure 1. The constitutiveB–H relation is given for YBaCuO superconductors by equations (4)
and (8) at fixedT = 77 K, with the parametersλ(0) = 100 nm,ξ(0) = 1.4 nm,Hc2(0) = 170 T,
Tc = 92 K,rp = 7.5 nm,ap = 50 nm (B8 = 8.28 kG). The solid lines represent the commensurate
curves, showing the small-slope and lock-in transitions forl = −1, 0, 1. The dotted line represents
the Abrikosov curve in the unpinned case (jumps are not shown).

periodic background [28]. It is much more reasonable to assume that energetically favourable
structures may have domains with hexagonal lattices inside them and domain walls between
them. Using the FVdM model [27] as a generic form to make an estimate, domains are
disfavoured if the dimensionless domain density∼1/L = √Vp/ε0 with relative domain size
L is not greater than the relative average mismatch of the two periodicity scales (of the vortex
lattice and pin lattice)δpq/ap, whereδpq = ap − (p/q)a0 with integerp andq. Thus the
domain wall condition isδpq 6 ap

√
Vp/ε0, showing a dependence on the depth of pinning.

This simple estimate shows that domain-induced effects could occur if

1− T/Tc > 2(ξ(0)/rp)
2[exp(r2

p/a
2
p)− 1].

For high-Tc materials with the parameters given above, domain formation occurs over a
wide range of 1− T/Tc > 10−3. Theoretically, all of the peculiarities ofB(H) curves
including integer matching fieldsBlm/B8 = µ±2

lm and rational matching fieldsBpq/B8 =
p2/q2 = 9/4, 25/9, 25/4 etc will arise if the potentialVp is strong enough. For example,
recent numerical simulations show [29] phase locking, Arnold tongues and devil’s staircases
in driven vortex lattices with periodic pinning. However, in an experiment only a few of
the commensurate phases will be observable because of the finite resolution. This work
focuses mainly on the integer matching fields and figures are produced for the matching fields
Bl/B8 = 1/3, 1, 3.

3. The elastic energy functional and the periodic pinning potential

Vortex lines have the reputation of leading to elastic forces which are modified by occasional
spare pins [30]. On the other hand, thermal energy favours a vortex liquid of lines. Thus we
need to consider an elastic energy functional and a periodic pinning potential. Vortex lines
i, j of transverse separationr = ri − rj interact via a screened potential in three-dimensional
coordinate space given byV (r) = (1/r) exp(−r/λ) with the coordinate of the vortex line
segmentri = (Ri + ui (z), z) at z displaced by an amountui (z) from its perfect hexagonal
reference siteRi . Hereλ is the London magnetic penetration depth in thexy-plane. Its Fourier
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transform is given byV (k) = 1/[1 + λ2(K2 + ε2k2
z )] with k = (K, kz) andK = (kx, ky).

Here ε = √mab/mc < 1 is the ratio of the anisotropic Ginzburg–Landau masses. The
momentum-space displacements are

uµ(k) = a2
0

∑
i

∫
dz exp(−iK ·Ri ) exp(−ikzz)u

µ

i (z)

with µ = (x, y) where the integral is taken over allz for a given vortex linei, and the sum is
over all vortex lines. The inverse transform is

u
µ

i (z) =
∫ ∞
−∞

dkz
2π

∫ K2
BZ

0

d2K

(2π)2
exp(iK ·Ri ) exp(ikzz)uµ(k)

where theK-integral is over the two-dimensional Brillouin zone, approximated by a circle of
radiusKBZ =

√
4π/a0 with unit-cell area(π/4)a2

0. For the hexagonal lattice, the reference
sites areRi = (l

√
3a0/2, (2l +m)a0/2). Then an elastic energy functional can be obtained

for small displacements in momentum space in terms of strain variables [11]:

E
(1)
el =

1

2

∫ ∞
−∞

dkz
2π

∫ K2
BZ

0

d2K

(2π)2
[
c11(k)|K · u(k)|2 + c66|K⊥ · u(k)|2 + c44(k)k

2
z |u(k)|2

]
.

(11)

HereK⊥ = (ky,−kx) andc11, c66 andc44 are the compressional, shear and tilt elastic moduli
of the vortex lattice in an isotropic medium. The simplest possible expressions for elastic
moduli are

c11(k) ' c44(k)

ε2
' B2/4π

ε2 + λ2K2
c66 = Bφ0

(8πλ)2

due to the softening of the vortex lattice in high-Tc superconductors. Quantum dissipation
effects are also important below the intermediateT and the elastic free energy including such
effects in (11) is modified to [11]Eel = E(1)el +E(2)el , where

E
(2)
el =

1

2

∫ ∞
−∞

dkz
2π

∫ K2
BZ

0

d2K

(2π)2
∑
n

[ρ(ωn)ω
2
n + η(ωn)ωn]|un(k)|2 (12)

and the displacement fieldu(z) → u(z, τ ) acquires an (imaginary) time dependence with
the Matsubara frequencyωn = 2πnkBT /h̄. Hereun=0(k) is the previousu(k) andρ(ωn)
is the vortex mass per volume. The viscosity coefficient isη(ωn) = η(0)/(1 +ωnτr) where
η(0) = φ0Hc2/ρNc

2a2
0 is the vortex coefficient,ρN is the normal-state resistivity andτr denotes

an appropriate effective quantum relaxation time.
The pinning energy is taken to be parabolic in displacement from the minimum:

Epin = 1

2
Vpν

∑
i

∫ Lz

0
dz

[
1

r2
p

∣∣∣δpi − R̃pi(z) + ui (z)
∣∣∣2 − 1

]
× 2(rp − |δpi − R̃pi(z) + ui (z)|) (13)

where R̃pi(z) represents the transverse misalignment of columnar pins and possible
‘straggling’ of the columns along thez-axis. The elastic energy terms (11) and (12) are
diagonalized in momentum space while the pinning energy term (13) is diagonal only in
coordinate space. To carry out the functional integration in momentum space, one needs to
approximate the Heaviside step function constraint to holding in an average sense (neglecting
R̃2
pi � r2

p): |ui + δpi |2 < r2
p, through the following two steps. Firstly, since the equilibrium
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variablesδpi (for ui ' 0) and the displacement variablesui (z) (for any values ofδpi) are
independent each other, equation (13) can be simplified approximately to

Epin = 1

2
νVp

(
1− δ

2
p

r2
p

)
2(rp − δp)

∑
i

∫ Lz

0
dz

[
1

r2
p

∣∣∣R̃pi(z)− ui (z)
∣∣∣2 − 1

]
× 2(rp − ui (z)). (14)

Secondly, since the fluctuationui has a Gaussian distribution, the probability is

∼ exp

[
−1

2
β(|ui |2/r2

p − 1)

]
if the constraint is satisfied and

∼ exp

[
1

2
β(|ui |2/r2

p − 1)

]
if it is not. So one can take the fraction with this Gaussian weight, normalized to these
alternatives:

2(rp − ui(z)) ' 1

1 + expβ(〈u2
i 〉/2r2

p − 1)
≡ f (〈u2

i 〉). (15)

Substitution off for 2(rp − ui(z)) is a key approximation withβ a dimensionless constant
of order unity. f , with a Fermi-like distribution, mimics the constraint of (14) and is some
function interpolating between unity for〈u2

i 〉 � 0 and zero for〈u2
i 〉 � 0.

We assume that̃Rpi(z) is a random variable,〈R̃µpi(z)〉dis = 0 and its correlation function
involves ani-dependent misalignment and a Gaussian distribution straggling along thez-
direction:

〈R̃µpi(z)R̃µ
′

pi ′(z
′)〉dis = σ̄ 2

pa
2
pδii ′δµµ′ exp[−(z− z′)2/2L̄2

pr
2
p]. (16)

Here σ̄p, L̄p are dimensionless variables describing the disorder in thexy-plane and the
correlation length in thez-direction, respectively. Since the elastic energy functionals (11)
and (12) are Gaussian, one takes only a disorder average forEpin by use of the correlation
function equation (16). One finally gets the total-energy functional in momentum space:

E0 = E(1)el +E(2)el +
1

2

∫ ∞
−∞

dkz
2π

∫ K2
BZ

0

d2K

(2π)2
εp

a2
0

|u(k)|2

εp ≡ νf Vp
r2
p

(
1− σ̄ 2

p

σ̄ 2
pc

)(
1− δ2

p

a2
p

)
2(rp − δp)

σ̄ 2
pc ≡

kBT rp

Vpa2
p

√
2πL̄p

exp[(kzL̄prp)
2/2].

(17)

Although the pinning energy contribution is like a quantum contribution, it will affect both the
thermal and quantum mean displacements. Equation (17) shows that the columnar disorder
reduces the pinning strength,Vp → Vp(1− σ̄ 2

p/σ̄
2
pc), and acts like a zero pin for̄σp greater

than its critical valuēσpc.

4. Inhibition of vortex-lattice melting with hexagonal columnar pins and its
encouragement with an applied current drive

The melting temperature depends dramatically both on the flexibility of the lines and the ratio
of pinning energy to elastic energy. The mean square displacement amplitude

〈|ui |2〉 =
∑
n,k

〈|un(k)|2〉 ≡ d2
p
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can be expressed as

d2
p =

(∫
D[u]

∑
n

|un|2 exp(−E0/kBT )

)/(∫
D[u] exp(−E0/kBT )

)

= kBT
∑
n

∫ ∞
−∞

dkz
2π

∫ K2
BZ

0

d2K

(2π)2

(
1

c11(k)K2 + c44(k)k2
z + η(ωn)|ωn| + εp/a2

0

+
1

c66K2 + c44(k)k2
z + η(ωn)|ωn| + εp/a2

0

)
(18)

from transverse and longitudinal components. Following Blatteret al [8,11], I use the simplest
formula to deduce the mean square displacement amplitude. First, consider the thermal term
(n = 0); the result is

(d(T )p )2 = (d(T )0 )2pred . (19)

Here

(d
(T )
0 )2 =

√
Gi

βm

√
bt

1− t − ba
2
0

is the zero-pin mean square displacement amplitude [8,11] with the Ginzburg number

Gi = 1

8
[kBTc/εε0(0)ξ(0)]

2

and numerical factorβm ' 5.6. Where I have simplified the integral formula, the detailed
calculations merely change the value ofβm [6,8]. With kz = π/L̄prp, the reduction factor is

pred ≡
√

1 +p − p ln[(1 +
√

1 +p)/
√
p] (20)

where

p ≡ εp

4πc66
=
√

3νf a2
0

2πr2
p

(
1− σ̄ 2

p

σ̄ 2
pc

)(
1− δ2

p

a2
p

)
2(rp − δp) ln

(
1 +

r2
p

2ξ2(t)

)
represents the ratio of pinning energy to elastic energy. This is a key parameter and varies
from zero (zero pins) to�1 (strong pins). For commensurate regimes, the thermal fluctuation
magnitudes are reduced by the factorpred , andpred ' 1−p ln 2 forp � 1 andpred ' 2/3

√
p

for p � 1.
The quantum contribution (n 6= 0) is dominated by single-vortex fluctuations atK ∼ KBZ;

the result is

(d(Q)p )2 = (d
(Q)
0 )2

1 +TQ/T
. (21)

Here(d(Q)0 )2 ' 4ν0ξ/π
2KF is the zero-pin mean square displacement amplitude [8,11] with

the Fermi wave vectorKF ' 1.5–2.0 nm−1 and numerical factorν0 ' 4 [8]. The quantum
characteristic temperatureTQ is

TQ = φ2
0e

2ρNνf

16π4r2
ph̄kBκ

2

(
1− σ̄ 2

p

σ̄ 2
pc

)(
1− δ2

p

a2
p

)
2(rp − δp) ln

(
1 +

r2
p

2ξ2

)
below which quantum tunnelling is suppressed by the hexagonal lattice of columnar pins.
SinceTQ � Tm [13], we can ignore this effect.

Combining thermal and quantum contributions, I obtain

d2
p = (d(T )p )2 + (d(Q)p )2 =

√
Gi

βm

√
bt

1− t − ba
2
0pred +

4ν0ξ(0)

π2KF
√

1− t − b . (22)
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Extending the Lindemann melting criterion, the vortex lattice becomes unstable and melts
whendp reaches an appreciable fractioncL ' 0.1–0.3 of the scale lattice constanta0 (ap) for
B > B8 (B < B8):

d2
p = νc2

La
2
p. (23)

It is actually more convenient to determine the melting line asBm(T ) by solving the equation

t = 1− bm − ξ2(0)

νc2
La

2
p

[
2πtpred

√
Gi

βmbm
+

4ν0

π2ξ(0)KF

√
1− t − bm

]
. (24)

In general,f depends ond2
p and is thus evaluated self-consistently. For the vortex-lattice

melting, however, one can usef = f (νc2
La

2
p) in this case. Alternately, from equation (24)

one can get its inverse formTm(B) and further obtain the melting lineTm[B(H)] by use of
equations (4) and (8). Clearly, sincepred < 1 for commensurate regimes, the melting line is
pushed to higher temperatures.

With the following choice of parameters for the YBaCuO system:λ(0) = 100 nm,
ξ(0) = 1.4 nm,ε = 1

5, Tc = 92 K,Hc2(0) = 170 T (soGi = 4× 10−3),KF ' 1.7 nm−1 [8],
βm = 5.6, ν0 = 4, β = 1, rp = 7.5 nm andap = 50 nm (B8 = 8.28 kG), and the fitting
parametercL = 0.2 for the zero-pin case [8, 31] and̄σp = 0 (without disorder), figure 2
shows the melting lineTm(H) (solid line). This line rises sharply on going fromB outside
the commensurate region toB inside the small-slope region forl = −1, 0, 1. Roughly,
Tm ' Tc/(1 + 0.05pred) at B = B8, well below Tc. The increase of 10% inTm agrees
with the observation [19] excellently, in whichBm(T ) shows a series of cusps withµ2

l0 = l
(l = 1, 2, 3, . . .).
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Figure 2. The curve of the melting temperatureTm versus the external fieldH is given by
equations (24), (4) and (10), with the parametersε = 1

5 , βm = 5.6, ν0 = 4,KF = 1.7 nm−1,
cL = 0.20, β = 1 andσ̄p = 0. The solid line represents the curve in the absence of a current
drive (J = 0). The dotted line represents the equation (24) curve modified by equation (28) for
J = 1×105 A cm−2. In the pinned case, there are three plateaus forB = −1, 0, 1 (the curve with
disorder is not shown). In the unpinned case, as a special example, the shape of the melting line is
well described by the single remaining parametercL = 0.20.

Now considerx-directional current-J drive effects.J is like a topological ‘electric field’
with a linear potential energy additional to equation (17):

E = E0 −
∑
i

∫ Lz

0

φ0

c
Ju

y

i dz. (25)
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SinceE0[u] is Gaussian, one can easy obtain the statistical partition function:

Z =
∫
D[u] exp(−E/kBT ) = Z0 exp

[
〈u2
y〉0

1

2

(
φ0JLz

ckBT

)2
]

(26)

with subscript zero denoting the absence ofJ . From〈uy〉 ∝ ∂Z/Z ∂J and〈u2
y〉 ∝ ∂2Z/Z ∂J 2,

I get

〈uy〉 = φ0JLz

ckBT
〈u2
y〉0 〈u2

y〉 = 〈u2
y〉0 + 2〈u2

y〉20
(
φ0JLz

ckBT

)2

.

Since〈u2
x〉0 = 〈u2

y〉0 = 1
2〈u2〉0 = 1

2d
2
p, I have

〈u2〉 = 〈u2
x〉0 + 〈(uy − 〈uy〉)2〉 = d2

p

[
1 +d2

p

(
φ0JLz

2ckBT

)2
]
. (27)

Using the criterion of melting withJ 6= 0, equation (24) is modified to

t = 1− bm − ξ2(0)

νc2
La

2
p

[
1 +d2

p

(
φ0JLz

2ckBT

)2
][

2πtpred

√
Gi

βmbm
+

4ν0

π2ξ(0)KF

√
1− t − bm

]
.

(28)

Figure 2 also shows the melting lineTm(H, J ) (dotted line), from equation (28), forJ =
1× 105 A cm−2 with Lz = 2ap = 100 nm. This line shifts downwards and the shifting is
smaller within the pinned region than outside the pinned region. Current encourages melting
while pinning inhibits melting. In the special case of the absence of columnar pins, on setting
p = 0, ν = B8/B andH = HA(B) in the above formulae, the plateaus disappear in the
curves ofTm0(H, J ), like in the early works [8,31].

5. Enhancement of critical current density with hexagonal columnar pins and its
destruction with columnar pin disorder

This section will address a possible mechanism for the commensurate enhancement of the
critical current densityJc due to the periodic columnar defects. The matching effect is easily
observed by examining the experimentalJc(H) curve. The mean columnar pin force, up
to numerical constants, is given byVprp/2Lzdp acting on trapped vortices, withrp/dp the
fluctuation effect [11].Jc is simply determined by equating the pinning forces with the Lorentz
forcesJcφ0a

2
p/ca

2
0 acting on all vortices in the areaa2

0:

Jc ' cVprpa2
0/2φ0Lza

2
pdp. (29)

Substitutingdp of equation (22) into equation (29), the explicit formula forJc is

Jc(T , B) = πcε0(0)ξ(0)rp
2φ0a3

p

ln [1 + r2
p/2ξ

2(t)]

× (1− t − b)3/2
/[

2πbtpred

√
Gib

βm
+

4ν0b
2

π2ξ(0)KF

√
1− t − b

]1/2

(30)

which is still self-consistent withf . However, sincef ∼ 1, this calculation is easy to do
numerically.

Combining equation (30) with equations (4) and (8) and using the same parameters as
above, in figure 3 I showJc versusH at fixedT = 77 K without disorder (solid line) and
with disorderσ̄p = 0.16 (dotted line) forL̄p = 1. It is reasonable to expect the difference in
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Figure 3. The curve of the critical current densityJc versus the external fieldH is given for
YBaCuO superconductors by equations (30), (4) and (8) at fixedT = 77 K. The parameters
chosen areλ(0) = 100 nm,ξ(0) = 1.4 nm,Hc2(0) = 170 T,Tc = 92 K, ε = 1

5 , βm = 5.6, ν0 =
4,KF = 1.7 nm−1, rp = 7.5 nm, ap = 50 nm (B8 = 8.28 kG) andβ = 1. The solid line
represents the curve in the absence of disorder(σ̄p = 0). The dotted line represents the curve with
non-zero disorder̄σp = 0.16. For commensurate regimes, there are three plateaus forl = −1, 0, 1.
For incommensurate regimes(p = 0), this smallJc corresponds to weak pins.

Jc between the cases with and without columnar defects due to columnar pinning. Note
that Jc(H) shows a series of plateaus when the magnetic flux lattice is commensurable
with the columnar pin lattice and figure 3 only shows those forl = −1, 0, 1. Roughly,
Jc(p 6= 0)/Jc(p = 0) ' 1/

√
pred and this ratio is about 2.0 atB = B8. Compared to

random pinning [1,11], regular pinning leads to a marked enhancement ofJc. This is similar
to the finding from the calculation of the magnetization [32]. The dotted line shows that the
introduction of disorder shiftsJc towards lower values and washes out the plateau when the
disorder reaches a characteristic value. The relative suppression of the plateaus is stronger for
l = 1 than forl = 0 and−1. This is because the plateau forl = 1 nearB = 3B8 is caused by
more weakly pinned interstitial vortices, which are more susceptible to disorder. ThisJc(H)

curve is one of my key results.
It is interesting to calculateJc(T ) at B = B8, the balance between regular pinning

and thermal fluctuation. The solid line in figure 4 shows this behaviour, displayingJc ∼
(1− T/Tc)3/2 at intermediate temperatures as expressed explicitly in equation (30) andJc
exponentially vanishing at high temperatures with increasing temperature. This behaviour
agrees well with analysis [11] and observation [19]. The(1−T/Tc)3/2 dependence ofJc is also
the signature of columnar defect pinning [21]. Thermal fluctuations have smoothed the weak
pinning potential at high temperatures, soJc decreases rapidly with increasing temperature,
while the regular pinning retains more efficiency with thermal fluctuations at intermediate
temperatures, resulting in a power-3/2 decay ofJc with increasing temperature. The dotted
line in figure 4 shows theJc(T ) curve with disorder̄σp = 0.16 atB = B8, indicating a marked
decrease inJc below intermediate temperatures due to disorder effects.

6. Summary

The presence of a regular lattice of columnar defects is not only technologically relevant but
also provides the framework for the physical realization of novel thermodynamical phases
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Figure 4. The Jc–T curve atB = B8 (the other
parameters are the same as in figure 3).

such as commensurability and multiple Bose glasses. The strong periodic pinning introduces
additional new features into the thermodynamic phase diagram—such as the creation of new
small-slope transitions, the inhibition of vortex-lattice melting and the enhancement of critical
current density, as well as the appearance of their plateaus. In this work, I have investigated the
effects of a hexagonal lattice of columnar defects on the curves of the magnetic inductionB(H),
vortex-lattice meltingTm(H)and critical current densityJc(H). The vortex–vortex interaction,
thermal and quantum fluctuations, an applied current drive and columnar pin disorder have
been taken into account. By use of the Gibbs free-energy minimum, through the exact analysis
of the vortex interaction, theB(H) curve has been calculated. Under the elastic approximation,
theTm(H) curve has been estimated using the extended Lindemann criterion. By means of
a dimensional estimation, theJc(H, T ) curves have been plotted. The results clearly show
that the balance between the vortex-pin commensurability and thermal/quantum fluctuations
produces inJc a marked increase, shifts the experimentally observedTm towards higher values
and also leads to a series of plateaus inJc(H) andTm(H) curves. The applied current drive
encourages vortex-lattice melting. This occurs mainly in the regions of incommensurate field
and it is hard to destroy the plateaus within the commensurate regions. The balance between
the best matching atB = B8 and thermal fluctuations produces inJc a power-3/2 decay with
temperature at intermediate temperatures and an exponential vanishing close toTc. The delta-
correlated columnar pin disorder with a Gaussian distribution destroys all of these favourable
effects and washes out all plateaus when it is greater than its critical value. It needs pointing
out, finally, that this approach is not only suitable for high-Tc superconductors but also works
especially well for conventional superconductors at the spatial scale accessible to experimental
investigations.
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